103 research outputs found

    The 2017 reversal of the Beaufort Gyre: Can dynamic thickening of a seasonal ice cover during a reversal limit summer ice melt in the Beaufort Sea?

    Get PDF
    During winter 2017 the semiā€permanent Beaufort High collapsed and the anticyclonic Beaufort Gyre reversed. The reversal drove eastward ice motion through the Western Arctic, causing sea ice to converge against Banks Island, and halted the circulation of multiyear sea ice via the gyre, preventing its replenishment in the Beaufort Sea. Prior to the reversal, an anomalously thin seasonal ice cover had formed in the Beaufort following iceā€free conditions during September 2016. With the onset of the reversal in January 2017, convergence drove uncharacteristic dynamic thickening during winter. By the end of March, despite seasonal ice comprising 97% of the ice cover, the reversal created the thickest, roughest and most voluminous regional ice cover of the CryoSatā€2 record. Within the Beaufort Sea, previous work has shown that winter ice export can precondition the region for increased summer ice melt, but that a short reversal during April 2013 contributed to a reduction in summer ice loss. Hence the deformed ice cover at the end of winter 2017 could be expected to limit summer melt. In spite of this, the Beaufort ice cover fell to its fourth lowest September area as the gyre reā€established during April and divergent ice drift broke up the pack, negating the reversal's earlier preconditioning. Our work highlights that dynamic winter thickening of a regional sea ice cover, for instance during a gyre reversal, offers the potential to limit summer ice loss, but that dynamic forcing during spring dictates whether this conditioning carries through to the melt season

    Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer

    Get PDF
    The aim of this study was to identify deregulated transcription factors (TFs) in colorectal cancer (CRC) and to evaluate their relation with the recurrence of stage II CRC and overall survival. Microarray-based transcript profiles of 20 normal mucosas and 424 CRC samples were used to identify 51 TFs displaying differential transcript levels between normal mucosa and CRC. For a subset of these we provide in vitro evidence that deregulation of the Wnt signalling pathway can lead to the alterations observed in tissues. Furthermore, in two independent cohorts of microsatellite-stable stage II cancers we found that high SOX4 transcript levels correlated with recurrence (HR 2.7; 95% CI, 1.2ā€“6.0; P=0.01). Analyses of āˆ¼1000 stage Iā€“III adenocarcinomas, by immunohistochemistry, revealed that patients with tumours displaying high levels of CBFB and SMARCC1 proteins had a significantly better overall survival rate (P=0.0001 and P=0.0275, respectively) than patients with low levels. Multivariate analyses revealed that a high CBFB protein level was an independent predictor of survival. In conclusion, several of the identified TFs seem to be involved in the progression of CRC

    Matrix-Bound PAI-1 Supports Cell Blebbing via RhoA/ROCK1 Signaling

    Get PDF
    The microenvironment of a tumor can influence both the morphology and the behavior of cancer cells which, in turn, can rapidly adapt to environmental changes. Increasing evidence points to the involvement of amoeboid cell migration and thus of cell blebbing in the metastatic process; however, the cues that promote amoeboid cell behavior in physiological and pathological conditions have not yet been clearly identified. Plasminogen Activator Inhibitor type-1 (PAI-1) is found in high amount in the microenvironment of aggressive tumors and is considered as an independent marker of bad prognosis. Here we show by immunoblotting, activity assay and immunofluorescence that, in SW620 human colorectal cancer cells, matrix-associated PAI-1 plays a role in the cell behavior needed for amoeboid migration by maintaining cell blebbing, localizing PDK1 and ROCK1 at the cell membrane and maintaining the RhoA/ROCK1/MLC-P pathway activation. The results obtained by modeling PAI-1 deposition around tumors indicate that matrix-bound PAI-1 is heterogeneously distributed at the tumor periphery and that, at certain spots, the elevated concentrations of matrix-bound PAI-1 needed for cancer cells to undergo the mesenchymal-amoeboid transition can be observed. Matrix-bound PAI-1, as a matricellular protein, could thus represent one of the physiopathological requirements to support metastatic formation

    Gene expression profiling of noninvasive primary urothelial tumours using microarrays

    Get PDF
    At present, the mechanism leading to bladder cancer is still poorly understood, and our knowledge about early events in tumorigenesis is limited. This study describes the changes in gene expression occurring during the neoplastic transition from normal bladder urothelium to primary Ta tumours. Using DNA microarrays, we identified novel differentially expressed genes in Ta tumours compared to normal bladder, and genes that were altered in high-grade tumours. Among the mostly changed genes between normal bladder and Ta tumours, we found genes related to the cytoskeleton (keratin 7 and syndecan 1), and transcription (high mobility group AT-hook 1). Altered genes in high-grade tumours were related to cell cycle (cyclin-dependent kinase 4) and transcription (jun d proto-oncogene). Furthermore, we showed the presence of high keratin 7 transcript expression in bladder cancer, and Western blotting analysis revealed three major molecular isoforms of keratin 7 in the tissues. These could be detected in urine sediments from bladder tumour patients

    Cyr61/CCN1 Displays High-Affinity Binding to the Somatomedin B 1ā€“44 Domain of Vitronectin

    Get PDF
    OV) family of extracellular-associated (matricellular) proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C (vWF), thrombospondin type 1 (TSP), and C-terminal growth factor cysteine knot (CT) domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, Ī²-endorphin, and other molecules. domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis

    Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43

    Get PDF
    Tbx3, a T-box transcription factor, regulates key steps in development of the heart and other organ systems. Here, we identify Sox4 as an interacting partner of Tbx3. Pull-down and nuclear retention assays verify this interaction and in situ hybridization reveals Tbx3 and Sox4 to co-localize extensively in the embryo including the atrioventricular and outflow tract cushion mesenchyme and a small area of interventricular myocardium. Tbx3, SOX4, and SOX2 ChIP data, identify a region in intron 1 of Gja1 bound by all tree proteins and subsequent ChIP experiments verify that this sequence is bound, in vivo, in the developing heart. In a luciferase reporter assay, this element displays a synergistic antagonistic response to co-transfection of Tbx3 and Sox4 and in vivo, in zebrafish, drives expression of a reporter in the heart, confirming its function as a cardiac enhancer. Mechanistically, we postulate that Sox4 is a mediator of Tbx3 transcriptional activity

    SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis

    Get PDF
    SOX transcription factors are essential for embryonic development and play critical roles in cell fate determination, differentiation and proliferation. We previously reported that the SOX2 protein is expressed in normal gastric mucosae but downregulated in some human gastric carcinomas. To clarify the roles of SOX2 in gastric carcinogenesis, we carried out functional characterisation of SOX2 in gastric epithelial cell lines. Exogenous expression of SOX2 suppressed cell proliferation in gastric epithelial cell lines. Flow cytometry analysis revealed that SOX2-overexpressing cells exhibited cell-cycle arrest and apoptosis. We found that SOX2-mediated cell-cycle arrest was associated with decreased levels of cyclin D1 and phosphorylated Rb, and an increased p27Kip1 level. These cells exhibited further characteristics of apoptosis, such as DNA laddering and caspase-3 activation. SOX2 hypermethylation signals were observed in some cultured and primary gastric cancers with no or weak SOX2 expression. Among the 52 patients with advanced gastric cancers, those with cancers showing SOX2 methylation had a significantly shorter survival time than those without this methylation (P=0.0062). Hence, SOX2 plays important roles in growth inhibition through cell-cycle arrest and apoptosis in gastric epithelial cells, and the loss of SOX2 expression may be related to gastric carcinogenesis and poor prognosis
    • ā€¦
    corecore